

Photonics Integration in Si P Platform

May 27th 2014

Fiber to the Chip

Overview

Introduction & Goal of Silicon Photonics

Silicon Photonics Technology

Wafer Level Optical Test

Integration with Electronics

Light Source for Silicon Photonics

Packaging of Silicon Photonics Devices

Reliability

Conclusions

Silicon Photonics Introduction

Silicon Photonics Technology:

- Silicon material system and processing techniques to manufacture integrated optical devices
- Passive photonic functions + optical modulation + optical detection (+ electronic circuits)
- Development started in early 2000s when sub 0.5 um lithography became available
- There are many "flavors" of Si Photonics technology, hence it is difficult to make general statements

Goal of Silicon Photonics:

- Leverage from the IC industry:
 - o Design infrastructure and methodologies
 - o Wafer manufacturing and methodologies
 - Packaging & Test infrastructure and methodologies
- Enable a very high level of integration:
 - o Increased functionality and density
 - Simplification of optical/electrical packaging & test

REQUIRES VOLUME TO BE MEANINGFUL!

• Silicon Photonics Applications:

- Most silicon photonics applications are in the area of high-speed communications
- Also significant efforts emerge in the area of biochemical sensing and sensor applications in general

Silicon Photonics Process Technology & PDK

WAFER MANUFACTURING

- SOI wafer
- Litho and etch of photonic structures
- Implants for active devices
- Ge selective Epi for integration of
- Standard BEOL
- Silicon Photonics Foundries:

Freescale: mature

ST: in qualification

DEVICE LIBRARY

- Passives: waveguides, DC, Yjunctions, WDM
- Light couplers for fixed and uncontrolled polarization
- Phase Modulators
 - High-speed phase modulators
 - Low-speed phase modulators
- Waveguide Photo-detectors:
 - High-speed photo-detectors
 - Monitor photo-detectors

DESIGN INFRASTRUCTURE

- Cadence based integrated design flow
- Device library with behavioral models and process corners
- Automated Layout
- E-E, O-E, O-O LVS deck w. extraction
- E-E, O-E, O-O DRC deck
- End-to-end simulation capability at PVT corners
- Very similar design environment as electronics

Silicon Photonics Wafer Level Optical Testing

- Based on industry standard TEL Precio prober
- 200 and 300 mm Silicon Photonics wafer testing
- New optical probe-head designed by Luxtera
 - Easy planarization/alignment and fast motion
- Easy test on single wafers, full cassette & FOUPs
 - Faster, less operator-intensive alignment procedure using prober cameras
- 4X faster than previous solution for optical sort
 - New method for FA-to-device alignment, optimized data transfer
- Optical test capability: Gauge R&R: 0.1 dB
- Wafer-scale testing is a work horse for manufacturing and development: Operates ~24/7

Light Source for Silicon Photonics

- Most transceiver applications need the light source to be integrated with the Si P die
- Si Photonics offers ability of using a remote light source
- Many types of light sources were explored, finally we settled with a standard InP laser diode in a silicon micro-package

- Incorporates many "lessons learned":
 - Use a mature InP laser diode
 - -> excellent reliability
 - Include an isolator
 - Use efficient coupling scheme into die
 - Wafer level assembly, packaging and test
 - Established burn-in methods

Silicon Photonics: Integration with Electronics

Monolithic integration photonics & electronics

- Single chip solution
- In some cases lowest parasitics between photonic and electronic devices
- More complex manufacturing process (interactions)
- In some cases not area efficient
- Scaling to advanced electronic node is very expensive

Hybrid integration photonics & electronics

- Multi-chip solution: face-to-face bonding
- Slightly higher parasitics between photonic and electronic devices (Cu Pi pads)
- Decoupling of photonics and electronics processes
- Efficient use of area (photonics doesn't take area on (expensive) advanced electronic node
- Flexible choice of process node electronic circuit
- Straight forward integration with electronic IP from partners

Electronic IC

Micro bump interconnect

Photonic IC

Monolithic electronic and photonic IC

Wafer Level IC assembly

Example: Chipset for 8x28Gbps Transceiver

Electronic-die:

- 28 nm technology
- E-interface with by-passable re-timer & programmable signal conditioning
- BIST
- 2 wire communication
- Laser Driver
- MZI drivers & TIAs
- Digital core

Photonic-die:

- MZIs
- Ge HSPDs
- Ge Monitor PDs for control and monitoring
- BIST
- Photonics assembly features

Packaging of Si Photonics based QSFP AOC

MEMS Laser Source

Silicon Photonic die

Reliability Assurance: Qualification Tests Example 1

System die qualification per JEDEC JESD47:

- Performed and passed with both 4x10 G and 4x14 G monolithic chipsets
- The qualification was primarily done on die level
 - Test vehicle consisted of Lotus die packaged in QFP Packages
 - Testing and test vectors same as die optical probe
- HTOL leg was also completed on full QSFP modules since they offered maximum high speed test coverage
- CMOS die functionality was comprehensively verified in 2 different test platforms:
 - Parametric test at room temperature extracting total lane jitter, criterion:
 Worst-case End-Of-Life (2dB extra link penalty) total jitter (PRBS31) meets spec.
 - Extended data-transfer test in an Infiniband switch-box at high temperature (70C) that ensures a BER < 10-14

Luxtera Proprietary

STRESS	TEST VECHILE	CONDITIONS	SAMPLE SIZE (Number of lots/# per lot)
High Temperature Operating Life (HTOL)	Die	Tj >/ 125 C, Vcc >/ Vccmax, 1000hrs	3 lots/77 units
Hight Temperature Storage Life (HTSL)	Die	Ta >/ 150 C, 1000hrs	3 lots/25 units
Human body Model ESD	Die	Ta = 25 C, +/- 1000 V High-speed pins, +/- 2000V other pins	3 units
Charged Device Model ESD	Die	Ta = 25c, +/-250V all pins	3 units
High Temperature Operating Life (HTOL)	Cable	Tj >/ 108 C, Vcc=1.1xVccmax, 1000hrs	3 lots/50 units

Reliability Assurance: Qualification Tests Example 2

Optical transceiver qualification per Telcordia GR-468-CORE

- Successfully passed full Telcordia qualification on two generations of Si Photonics based AOCs
- Tests included:
 - 2000 hrs Biased dry heat (85C) extended to 5000hrs for informational purposes
 - ESD testing on CMOS die followed by 1000hrs of biased dry heat (85C)
 - 1000hrs biased damp heat (85C, 85% R.H.) extended to 2000hrs for informational purposes
 - 100 cycles of thermal cycling from -40 to 85C extended to 500 cycles for informational purposes.
 - 50 cycles of biased thermal cycling with humidity

- Human body model and Air & contact discharge ESD testing
- Mechanical vibration and shock testing (with and without attached test board)
- Fiber cable flex, twist & tensile strength testing
- Durability of electrical connector
- Insertion/extraction force measurements
- Thermal shock testing (0 to 100C)

Conclusions

- Silicon Photonics has been in production since 2009, the first product was an 4x10 G AOC [now sold by Molex] for initially HPC applications
- Cloud datacenter build out drives single mode silicon photonics optical interconnect applications, where it is now already deployed
- Currently in development and qualification of Nx100G parallel single mode products (PSM4 MSA) in various form factors
- Work has already started on 400 G and associated low-cost duplex 100G transceiver products using a combination of higher baud rate, PAM-N and WDM
- Power reduction drives closer integration, first by use of Embedded Optical Modules, later by direct integration with ASICs by a Photonically Enabled Silicon Interposer (addition of TSV to Si P flow)

Acknowledgements

This presentation shows the work of the entire Luxtera team, their contributions are greatly acknowledged.

Thank you for your interest.